Welcome to the Foundations of Machine Learning, your practical guide to fundamental techniques powering data-driven solutions. Master key ML domains—supervised learning (prediction), unsupervised learning (pattern discovery), data preprocessing & feature engineering, and time series forecasting—using Pandas, Scikit-learn, Statsmodels, and Prophet to tackle real-world challenges.

Entdecken Sie neue Fähigkeiten mit 30% Rabatt auf Kurse von Branchenexperten. Jetzt sparen.


Foundations of Machine Learning
Dieser Kurs ist Teil von Machine Learning with Scikit-learn, PyTorch & Hugging Face (berufsbezogenes Zertifikat)

Dozent: Professionals from the Industry
Bei enthalten
Empfohlene Erfahrung
Kompetenzen, die Sie erwerben
- Kategorie: Statistical Modeling
- Kategorie: Predictive Analytics
- Kategorie: Applied Machine Learning
- Kategorie: Machine Learning Algorithms
- Kategorie: Data Cleansing
- Kategorie: Anomaly Detection
- Kategorie: Dimensionality Reduction
- Kategorie: Regression Analysis
- Kategorie: Scikit Learn (Machine Learning Library)
- Kategorie: Supervised Learning
- Kategorie: Unsupervised Learning
- Kategorie: Machine Learning
- Kategorie: Predictive Modeling
- Kategorie: Data Processing
- Kategorie: Time Series Analysis and Forecasting
- Kategorie: Data Transformation
- Kategorie: Forecasting
- Kategorie: Feature Engineering
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
August 2025
20 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihr Fachwissen im Bereich Machine Learning
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat von Coursera zur Vorlage

In diesem Kurs gibt es 4 Module
Welcome to supervised learning, the foundation of modern machine learning! In this module, you'll master essential algorithms such as linear regression, logistic regression, decision trees, and support vector machines (SVMs) that form the backbone of predictive analytics. We'll guide you through hands-on implementations using industry-standard tools like Scikit-learn, helping you build models that can predict outcomes with impressive accuracy. By the end of this module, you'll be able to select the right algorithm for different problems, train and evaluate models effectively, and interpret their results to drive data-informed decisions.
Das ist alles enthalten
13 Videos10 Lektüren6 Aufgaben4 Unbewertete Labore2 Plug-ins
What do you do when your data doesn't have labeled examples? In this module, you'll explore unsupervised learning, where algorithms find structure and insights in data all on their own. You'll master clustering techniques like K-Means and hierarchical clustering to group similar customers, products, or behaviors, and learn how to detect anomalies that could represent fraud or unusual events. By the end of this module, you'll be equipped with powerful tools to uncover hidden insights in your data that supervised methods might miss, expanding your toolkit for real-world data science challenges.
Das ist alles enthalten
10 Videos8 Lektüren5 Aufgaben4 Unbewertete Labore3 Plug-ins
Did you know that data preparation often determines model success more than algorithm selection? In this essential module, you'll learn the critical skills of data preprocessing and feature engineering that separate novice from professional data scientists. We'll guide you through handling missing data, encoding categorical variables, scaling features, and selecting the most important attributes that will make your models shine. By mastering these techniques, you'll dramatically improve your models' accuracy and reliability, ensuring they perform well on real-world messy data that would otherwise cause less-prepared models to fail.
Das ist alles enthalten
11 Videos7 Lektüren5 Aufgaben4 Unbewertete Labore4 Plug-ins
Let's figure out how to properly make forecasts from time-based data! In this module, you'll learn specialized techniques for working with time-dependent data like stock prices, sales forecasts, and sensor readings that traditional ML approaches can't handle effectively. You'll implement practical forecasting models using tools like ARIMA, Exponential Smoothing, and Facebook Prophet, understanding how to identify trends, seasonality, and other temporal patterns. By the end of this module, you'll be able to build accurate forecasting systems that can predict future values based on historical patterns, adding a powerful and in-demand skill to your machine learning toolkit.
Das ist alles enthalten
9 Videos5 Lektüren4 Aufgaben1 Programmieraufgabe3 Unbewertete Labore3 Plug-ins
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Dozent

von
Mehr von Machine Learning entdecken
- Status: Kostenloser Testzeitraum
Fractal Analytics
- Status: Vorschau
Coursera Project Network
- Status: Kostenloser Testzeitraum
- Status: Kostenloser Testzeitraum
Fractal Analytics
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Weitere Fragen
Finanzielle Unterstützung verfügbar,