Welcome to Advanced Machine Learning Techniques, where you'll dive deep into sophisticated approaches that power modern AI applications. We'll explore five key areas of advanced ML: ensemble methods for combining models, dimensionality reduction techniques for handling complex data, natural language processing for text analysis, reinforcement learning for decision-making systems, and automated machine learning for optimization. You'll work hands-on with industry-standard tools including Scikit-learn, XGBoost, NLTK, PyTorch, and MLflow, learning how to implement and optimize advanced algorithms in real-world scenarios.

Entdecken Sie neue Fähigkeiten mit 30% Rabatt auf Kurse von Branchenexperten. Jetzt sparen.


Advanced Machine Learning Techniques
Dieser Kurs ist Teil von Machine Learning with Scikit-learn, PyTorch & Hugging Face (berufsbezogenes Zertifikat)

Dozent: Professionals from the Industry
Bei enthalten
Empfohlene Erfahrung
Kompetenzen, die Sie erwerben
- Kategorie: Unsupervised Learning
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufĂźgen
August 2025
22 Aufgaben
Erfahren Sie, wie Mitarbeiter fĂźhrender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihr Fachwissen im Bereich Data Analysis
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat von Coursera zur Vorlage

In diesem Kurs gibt es 5 Module
In this module, you will establish ensemble learning techniques including bagging, boosting, and stacking. You'll learn how to combine multiple models to improve predictive performance and implement them using popular libraries like Scikit-learn, XGBoost, and LightGBM. Through hands-on practice, you'll evaluate ensemble models using cross-validation and learn to optimize their hyperparameters.
Das ist alles enthalten
16 Videos8 LektĂźren5 Aufgaben4 Unbewertete Labore4 Plug-ins
This module will help you master dimensionality reduction techniques to handle high-dimensional data effectively. You'll learn to apply Principal Component Analysis (PCA) to reduce dimensionality while retaining key features, use t-distributed Stochastic Neighbor Embedding (t-SNE) to visualize high-dimensional data in 2D/3D space for clustering and pattern recognition, and implement Uniform Manifold Approximation and Projection (UMAP) for efficient dimensionality reduction, leveraging its speed and structure-preserving properties.
Das ist alles enthalten
8 Videos7 LektĂźren4 Aufgaben3 Unbewertete Labore1 Plug-in
In this module, you'll focus on natural language processing techniques from basic text preprocessing to advanced sentiment analysis. You'll learn how to preprocess text data using tokenization, stopword removal, and stemming/lemmatization with Natural Language Toolkit (NLTK) and spaCy. Through implementation of text classification using various techniques like Bag-of-Words, TF-IDF, and word embeddings, you'll gain practical experience in NLP tasks. You'll also train sentiment analysis models using Hugging Face Transformers and Scikit-learn.
Das ist alles enthalten
13 Videos6 LektĂźren5 Aufgaben4 Unbewertete Labore2 Plug-ins
Reinforcement Learning Description: In this module, you'll explore the fundamentals of reinforcement learning (RL), including Markov Decision Processes (MDPs) and reward-based learning. You'll understand the key components of RL systems and implement both policy-based and value-based learning techniques. Through practical examples and hands-on implementation, you'll discover how RL is applied in real-world scenarios like robotics, gaming, and finance.
Das ist alles enthalten
7 Videos5 LektĂźren4 Aufgaben3 Unbewertete Labore1 Plug-in
This module focuses on automated machine learning techniques and model optimization. You'll learn to automate model selection and hyperparameter tuning using Auto-sklearn and GridSearchCV, and optimize models using MLflow for experiment tracking and reproducibility. You'll also explore Bayesian optimization techniques to improve model accuracy. The module concludes with a comprehensive capstone project that combines multiple techniques from throughout the course.
Das ist alles enthalten
10 Videos6 LektĂźren4 Aufgaben1 Programmieraufgabe3 Unbewertete Labore1 Plug-in
Erwerben Sie ein Karrierezertifikat.
FĂźgen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Dozent

von
Mehr von Data Analysis entdecken
- Status: Kostenloser Testzeitraum
Fractal Analytics
- Status: Kostenloser Testzeitraum
Johns Hopkins University
- Status: Kostenloser Testzeitraum
DeepLearning.AI
- Status: Kostenloser Testzeitraum
Johns Hopkins University
Warum entscheiden sich Menschen fĂźr Coursera fĂźr ihre Karriere?





Neue KarrieremĂśglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten â 100 % online
SchlieĂen Sie sich mehr als 3.400Â Unternehmen in aller Welt an, die sich fĂźr Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we donât give refunds, but you can cancel your subscription at any time. See our full refund policy.
Weitere Fragen
Finanzielle UnterstĂźtzung verfĂźgbar,